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Abstract: Computer-assisted synthetic analysis requires a systematic method of recognizing rings in polycyclic 
structures. This method should be generally applicable, fast, and should provide a concise description of the cyclic 
structure. The approach that has been developed operates on an w-cyclic structure (containing as many as 2" — 1 
rings) to select a "synthetic subset" of rings which provide a concise but complete description. The description is 
complete in the sense that any ring not in the "synthetic subset" can be generated by taking the logical exclusive or 
of the sets of bonds in rings which have been included in the "synthetic subset." This subset is defined as the set 
of all rings which cannot be expressed as the exclusive or of smaller rings, plus any other rings not larger than six. 
Algorithms for efficiently obtaining this "synthetic subset" have been developed, and results from applying these 
algorithms to a variety of ring networks are presented. 

Chemists concerned with the design of synthetic 
processes generally analyze cyclic organic struc

tures by examining either a three-dimensional model 
or a two-dimensional drawing and considering whether 
certain of the rings can be constructed by known meth
ods. There is a tendency to look for familiar structural 
patterns rather than to trace the network systematically 
and exhaustively. This purely intuitive approach is 
adequate for simple cyclic systems but may fail to 
recognize important features of more complex ring 
networks unless a systematic procedure is introduced. 
Computer programs for synthetic analysis12 and or
ganic structure or substructure search3'4 require a sys
tematic approach for even the simplest cyclic systems, 
since computers lack intuition. This approach should 
provide a complete description of a general ring net
work. It should be fast, and the description should 
be concise, to reduce the time required for its use or 
interpretation. 

The most obvious procedure to guarantee the per
ception of all important rings is clearly one in which 
all rings are perceived. This is not very efficient for 
large systems, since the total number of rings in an 
w-cyclic system (the cyclic order of a structure is given 
by the number of bonds minus the number of atoms 
plus one) can be as large as 2" — 1, and usually only 
about n of these will be of interest to a synthetic chemist. 
For example, the pentacyclic molecules cubane (I) and 
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iv*-methyldihydronicotinamide dimer (II) contain a total 
of 28 and 29 rings, respectively. In the case of cubane, 
only the six four-membered rings are of chemical in
terest (see below), and in the case of dinicotinamide, 

(1) E. J. Corey and W. T. Wipke, Science, 166, 178 (1969). 
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only the nine six-membered rings are of synthetic 
significance. Therefore, it is desirable to consider only 
the subset of rings which is meaningfully related to 
the synthetic chemistry of the system. This subset 
will be designated in the discussion which follows as a 
"synthetic subset." Two attempts to solve this problem 
have already been published.15 We shall compare 
these with the present approach in a later section of 
this paper. 

Generally the formation of a bond within a ring 
network depends most critically on the size of the 
smallest ring in which that bond is contained (neglecting 
considerations of functional groups). Therefore, it is 
required that the synthetic subset include a ring if, 
for some bond, there is no smaller ring containing 
that bond. For the purposes of synthetic analysis, 
larger rings are sometimes important {e.g., the six-
membered ring in norbornane is critical for synthesis 
via Diels-Alder addition). If the synthetic subset of 
rings provides a complete description of the ring sys
tem, it will be possible to treat these larger rings im
plicitly rather than including them in the subset which 
is listed explicitly. In order to define what is meant by a 
complete description of the ring system, it is necessary 
to consider some basic concepts of graph theory. 

Background. As is well known, group theory is a 
powerful tool for dealing with molecular symmetry. 
One of the most elementary applications of group theory 
makes use of the closure property of groups to test a 
list of symmetry operations for completeness {i.e., 
to check whether all products of symmetry operations 
are already included in the list of symmetry operations). 
If a molecule has many symmetry elements, we may 
start with certain partial lists and generate the remainder 
by taking products of those we already have. Simi
larly, a ring operation with a closure property can be 
useful for ring perception. 

Consider the bonds in either one of the two six-
membered rings of decalin, but not the bond which 
appears in both. These bonds form the ten-membered 
envelope ring. We can describe the bicyclic molecule, 
decalin, as consisting of two six-membered rings. This 
is a complete description, since the ten-membered 

(5) R. Fugmann, U. Dolling, and H. Nickelsen, Angew. Chem., Int. 
Ed. Engl, 6, 723 (1967). 
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peripheral ring can be generated by taking the bonds 
which appear in either of the two six-membered rings, 
but not in both. Its existence is implied by the state
ment that decalin consists of two six-membered rings 
with one bond in common. The logical exclusive or 
of the bonds is the ring operation we seek. 

We shall now proceed to a more formal approach 
which will enable us to make full use of the groups 
and vector spaces associated with this operation. We 
shall restate some fundamental theorems of graph 
theory6 in the conventional terms used to discuss chem
ical structures. It is useful first to define some terms 
which are not in general use by chemists. The first 
time a chemical term appears, the corresponding term 
from graph theory6 will be given in parentheses. 

The connectivity of an atom (vertex) is the number 
of atoms directly bonded to it (adjacent to it). A tree 
is a connected acyclic structure (graph). A spanning 
tree contains all the atoms in a structure. A ring closure 
bond3 (chord or link) relative to a given spanning tree 
is a bond not in the spanning tree. A ring (elementary 
circuit containing three or more vertices) is a closed 
path through three or more atoms, none of which ap
pears in the path more than once. When we refer 
to a ring, we shall generally mean the set of bonds 
in the ring. A bond disjoint union of rings is the set of 
all bonds appearing in two or more rings, no pair 
of which is bridged or fused (e.g., the set of bonds 
indicated in III is a bond disjoint union of rings, but 

coO 0 0 0 
m iv 

the set of bonds indicated in IV in not). If Si and S2 

are two sets of bonds, then their ring sum, Si © S2, 
is the set of bonds in either Si or S2, but not in both 
(i.e., the ring sum is equivalent to the logical exclusive 
or). 

Suppose the ring sum, S, is taken of two rings, Ri 
and R2. If Ri equals R2, then S is the empty set, <j>. 
Otherwise, S is not empty. If S is not empty, we can 
start at an arbitrary atom, &(, in S and begin tracing a 
path through the bonds (a i ; a^Xa ,̂ a*)... such that no 
bond appears in the path more than once. Since the 
connectivity of any atom in Ri or R2 is two, the con
nectivity of any atom in S is either two (Ri and R2 are 
bridged, fused, or isolated) or four (Ri is spiro joined 
to R2). Therefore, whenever we arrive at an atom, a.t, 
through bond (a^, aO, we can leave through the bond 
(a;, &n) until we return to atom a{. If there are atoms 
in S which are not on this path, we can repeat this 
procedure. The set S is therefore either a ring or a 
bond disjoint union of rings if we consider 4> to be a 
"ring." Furthermore, the set of all rings and bond 
disjoint unions of rings is closed under the operation 
ring sum. 

The set of all rings and bond disjoint unions of rings 
in any molecule forms a group under the operation 
ring sum (</> is the identity element and each ring is its 
own inverse). Together with the scalar field of integers 
modulo 2 (i.e., the numbers zero and one), they form a 
vector space. Each ring or bond disjoint union of 
rings is a vector in this space. The vector space is 

(6) C. L. Liu, "Introduction to Combinatorial Analysis," McGraw-
Hill, New York, N. Y., (1968). 

closed under addition (ring sum) and scalar multiplica
tion (O R = <(>, and 1 R = R). We shall now examine 
some properties of this ring space. 

Let na be the number of atoms and nb the number 
of bonds in a structure. There are na — 1 bonds in a 
spanning tree. Relative to any spanning tree there are 
then nb — na + 1 ring closure bonds. Suppose one 
of these ring closure bonds joins atoms a; and a,. 
The spanning tree contains these atoms (by definition) 
and a path between them (a tree is connected). This 
path is unique, since a tree is acyclic. If we add the 
ring closure bond to the spanning tree, we therefore 
form one ring. This is called a fundamental ring 
(fundamental circuit).7 There is a one-to-one cor
respondence between the set of n„ — na + 1 ring closure 
bonds and this fundamental system of rings relative 
to any spanning tree. 

Let R = {bi, b2, ..., bt, bt+u bi+2, ..., b^} be a ring, 
where bi, b2, ..., and bt are ring closure bonds and b i+i, 
bj+2, •••» and b, are bonds in the associated spanning 
tree. Let Rk be the fundamental ring corresponding 
to ring closure bond b*, and let R1 = Ri © R2 ©. . . © 
Rj. Since R and R1 both contain bonds bi, b2, ..., bt, 
R © R1 contains only bonds in the spanning tree. 
But R © R1 is a ring or a bond disjoint union of rings. 
The two previous statements are contradictory unless 
R © R1 = 4> so that R = R1. Therefore, any ring 
can be expressed as a linear combination of the funda
mental rings for a given spanning tree. Since Rk is 
the only fundamental ring containing the bond bk, 
the fundamental rings are linearly independent (i.e., R* 
cannot be expressed as a ring sum of the other funda
mental rings) and therefore form a basis for the ring 
space. The dimension of the ring space is equal to 
the cyclic order, nb — na + 1. Including the empty 
set, <$>, there are 2 " b - n i + 1 possible linear combinations 
of these basis vectors and therefore a maximum of 
2m,-ru+i _ i rings. Several algorithms have been 
published,8 which generate all rings from a set of funda
mental rings by taking the ring sum. Even when effi
ciently programmed, the required generation of all 
2" — 1 rings and bond disjoint unions of rings is very 
time consuming. In addition, one is faced with the 
problem of storing the resulting long ring lists and 
scanning them in future use. 

Theory. We can now make our intuitive concept 
of a complete description of a ring system more con
crete. We wish the synthetic subset of rings to span 
the ring space (i.e., they must include a basis for the 
ring space). This guarantees that our subset will pro
vide a complete description of the ring network in the 
sense that any ring not in our subset can be generated 
by taking the ring sum of rings in our subset. It is 
not necessary that the rings in our subset be linearly 
independent. It is clearly desirable to include all six 
four-membered rings for cubane (I). Since any five 
of these rings form a basis for the cubane ring space, 
the set of all six is linearly dependent. 

We can now define the set of minimum spanning rings 
for any structure. A minimum spanning ring is a 

(7) We are adopting the notation of reference 6, not that of reference 
5. 

(8) (a) P. L. Long, R. F. Phares, J. E. Rush, and L. J. White, ab
stract CHLT15, 160th National Meeting of the American Chemical 
Society, Chicago, 111., Sept 1970; (b) N. E. Gibbs, / . Ass. Computing 
Much., 16, 564 (1969). 
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Figure 1. A square network of cyclic order n has sides which 
include the bonds from n1/' rings. Three ring closure bonds are 
indicated by broader lines. The associated four-, six,- and eight-
membered fundamental rings "penetrate" to a depth of one, two, 
and three rings, respectively. 

ring which cannot be expressed as a ring sum of smaller 
rings. 

The set of minimum spanning rings includes the rings 
of primary synthetic interest. If for some bond, b, 
there is no ring smaller than R containing that bond, 
then R is a minimum spanning ring, since it cannot 
be expressed as a ring sum of smaller rings. This def
inition also guarantees that our synthetic set will 
include a basis for the ring space. We shall demon
strate this by assuming that it is not true and arriving 
at a contradiction. Suppose some ring, R, were linearly 
independent of the set of minimum spanning rings. 
Then R is not a minimum spanning ring, and it follows 
from the definition that R can be expressed as a linear 
combination of rings smaller than R (R = Ri © R2 

© . . . © Rf). Since R is linearly independent of the 
set of minimum spanning rings, so is one of these 
smaller rings, R̂  (1 <j< /)• If we iterate this process, 
we shall eventually conclude that if R is linearly inde
pendent of the set of minimum spanning rings, then 
so is some ring, Rk, which is smaller than all rings. 
Since this conclusion is impossible, the set of minimum 
spanning rings must include a basis for the ring space. 
This can be important. The pentacyclic structure, V, 

O 
V 

contains four three-membered rings, each of which 
is the smallest ring for some bond. In order to include 
the obviously present four-membered ring, we must 
require that we include a basis for the ring space in 
our set. Otherwise, we shall not distinguish between 
structures V and VI. 

AAAA 
VI 

The definition of minimum spanning rings requires 
that any such ring will either be synthetically significant 
or will be necessary for a complete description of the 
ring system. The inclusion of a basis implies that the 
set of minimum spanning rings contains a minimum 
of nh — na + 1 rings. The number of minimum span
ning rings will frequently equal the cyclic order of a 

system. Hence, the set of minimum spanning rings 
provides a complete and concise description of a ring 
network. 

We shall now present a method for finding the mini
mum spanning rings for an arbitrary ring network. 
Suppose we have a set of rings, Sr, which includes 
the set of minimum spanning rings. Let Sms be an 
empty set. If we keep adding the smallest ring(s) in S1. 
which is linearly independent of the rings in Sms to Sms 

until no such ring exists, then Sms will be the set of 
minimum spanning rings. 

The efficiency of our approach depends upon the 
generation of an appropriate set of rings, S r, which 
contains little besides the set of minimum spanning 
rings. The following property of minimum spanning 
rings will be useful in this context. Let R = {bi, 
b 2 , . . . , bt, bi+u bt+2, • • •, bj] be a ring, where bi, b 2 , . . . , b, 
are ring closure bonds. Let R* be the fundamental 
ring for bond b*. Suppose R is larger than all the R* 
(Ar= 1,2 0- Then R cannot be a minimum spanning 
ring, since it can be expressed as a linear combination 
of rings smaller than R. Therefore, if for every ring 
closure bond, b,, we collect all rings not larger than 
Ri, which contain b,, we shall include all minimum 
spanning rings in our collection. 

Consider the set of fundamental rings, {Ri, R2 , . . . , R*}, 
relative to some spanning tree. If the ring, Ra = 
Rt © R1, is smaller than either R* or R;,, we can replace 
this fundamental ring with Ra and still have a basis. 
If we iterate this process to convergence, we shall 
have a reduced basis, {Rai, R a „ . . . , R 0 n } . Let Ram„ 
be the largest ring in a reduced basis. If follows from 
the definition of minimum spanning rings that if for 
every ring closure bond, b (, we collect all rings not 
larger than either R, or Ram.„ we shall include all 
minimum spanning rings in our collection. If the 
spanning tree is grown in an appropriate fashion,9 

the reduced basis will frequently be the set of mini
mum spanning rings. 

In order to compare this approach with previous 
methods,1'5 it is necessary to estimate the number of 
rings that we must collect. Unlike algorithms for 
numerical computations, the number of steps we must 
perform for ring perception depends upon the details 
of the data (i.e., the ring network). Therefore, our 
timing estimates will necessarily be rather crude. 

The number of rings we must collect is proportional 
to the number of ring closure bonds, n, and the number 
of rings found for each ring closure bond. In a linear 
ring network (e.g., the homologous series; benzene, 
naphthalene, anthracene, etc.) only one ring must be 
found for each ring closure bond. In a square network 
the number of rings found for a ring closure bond will 
vary according to how deeply the fundamental ring 
"penetrates" the network (Figure 1). The worst case 
would essentially require analysis of a ring network 
of cyclic order «'A giving a total of 2"'A - 1 rings. 
The number of rings found for an "average" ring 
closure bond in a planar10 network should then be 
approximately 1/2 X 2n 'A. Similarly, the number of 
rings found for each ring closure bond in a nonplanar 
network is approximately 2 ( n V , - 1 ) . The total number 

(9) K. Paton, Commun. Ass. Computing Mach., 12, 514 (1969). 
(10) A planar graph is one that can be drawn so that the bonds inter

sect only at the atoms they join. 
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of rings we must collect to analyze an n-cyclic structure 
is approximately given by 

I nl/' linear structure J 

n2<nV.-» planar structure (1) 

n2(n'/i-i). nonplanar structure) 
when the above approach to obtaining the set of mini
mum spanning rings is used. This is really an upper 
bound, since we have not taken into account the use 
of a reduced basis. The number of rings we must 
collect will be considerably smaller than the total num
ber of rings. 

An alternative approach to obtaining a set of rings 
which includes all minimum spanning rings would be 
to take linear combinations of the fundamental rings 
relative to some spanning tree. This is analogous to 
our earlier discussion of the symmetry operations for a 
molecule. If m is the maximum number of ring closure 
bonds in any minimum spanning ring, we need only 
take linear combinations of m or fewer fundamental 
rings (R* = R*i + R*2 +•••+ R*m). There are a total 
of 2mnl/(n — j)\ j \ such linear combinations. If M 

3-1 

is the size of the largest minimum spanning ring, then 
clearly m is less than or equal to the minimum of M 
and n. We could determine M by initially assuming 
it is 3 and then increasing it by 1 until we find a set 
of minimum spanning rings, none of which contains 
more than M bonds. The number of linear combina
tions we must then consider is approximately nMjM\. 
Although the operation ring sum is very rapid, the 
number of times we must perform this operation in
creases much more rapidly than the number of rings 
we must grow with the above algorithm, for complex 
molecules of possible interest. The number of inter
mediate quantities we must store also grows much 
more rapidly. If we used a value of M smaller than 
the number of bonds in the largest minimum spanning 
ring, we have no guarantee that we will include the set 
of minimum spanning rings in our collection. 

Two noteworthy attempts have previously been made 
to define chemically important rings. The first of 
these5 gives results similar to the present approach, 
but the definition and the resulting algorithm are ex
tremely complex (all possible paths between all possible 
pairs of bridgehead atoms must be found). The com
plex definition makes it difficult to get an intuitive grasp 
of which rings will be perceived (or to derive the general 
properties of the ring lists produced). 

The number of bridgehead atoms in an n-cyclic 
structure can be as large as 2(n — 1). We shall assume 
an "average" number of bridgehead atoms equal to n. 
There are then n(n — l)/2 pairs of bridgehead atoms. 
Let atoms ai and a2 be one such pair. Let Z1 be any 
other bridgehead atom with connectivity C1. If on a 
path from ai to a2 we arrive at atom ait there are then 
C1 — 1 paths through which we could leave &}, other than 
the path we arrived on. If c is the "average" con
nectivity, there are approximately (c — 1)" elementary 
paths11 between each pair of bridgehead atoms. The 
total number of elementary paths between all pairs 
of bridgehead atoms is approximately n(n — IXc 
— l)"/2. The number of paths grows far more rapidly 

(11) An elementary path is one which does not contain any atom more 
than once. 

than the total number of rings. There are 384 ele
mentary paths between pairs of bridgehead atoms in 
cubane (the number predicted by the above formula 
is 5-4-25/2 = 320). Clearly this approach is not 
very practical for complex ring networks. 

The very large increase in computing time over the 
present approach does not seem to be justified. The 
basic difference in the resulting ring sets is that the 
previous algorithm will recognize all three rings defined 
by a bridged network [e.g., it will recognize four six-
membered rings and three eight-membered rings in 
adamantane (VII)]. The set of minimum spanning 

& 
VII 

rings includes only the two smallest rings defined by a 
bridged network [e.g., it includes only the four six-
membered rings in adamantane (VII)]. Special bi-
cyclic structures such as norbornane and indole which 
are strategically important for synthetic analysis can 
easily be perceived from the minimum spanning rings 
(e.g., if the ring sum of two five-membered rings is a 
six-membered ring, a norbornane substructure is pres
ent). The earlier definition of important rings8 is 
very time consuming to apply and includes rings which 
are of no synthetic interest. 

The second definition of chemically important rings 
is more tractable, but it too has serious disadvantages. 
The algorithm for obtaining "real" rings1 begins by 
the direct perception of all rings. It is therefore con
siderably slower than the present approach, although 
not as slow as the other earlier algorithm,5 when applied 
to complex ring networks. The set of "real" rings 
may include rings of questionable interest (e.g., four 
six-membered rings are "real" rings in cubane), and 
there is a discrepancy between the definition of "real" 
rings and the algorithm given for obtaining them (no 
maximum proper covering set1 of five rings exists for 
the pentacyclic structure, V). 

Both of the earlier approaches stress a correspondence 
to the rings intuitively recognized by the chemist. This 
is a rather vague criterion. We believe that the re
quirement that we include a basis for the ring space 
and any ring which is the smallest ring for some bond 
provides a more solid foundation for ring perception. 

It is possible that for some purposes our set 
of chemically important rings should include all rings 
containing six or fewer atoms. This is readily accom
plished by continuing to seek rings containing a 
given ring closure bond until we have both included 
the fundamental ring for this bond and grown all rings 
containing six or fewer atoms. The resulting set of 
rings may be considerably larger and the computing 
time required may increase substantially. Ultimately 
the set of chemically important rings one collects must 
depend upon the use one wishes to make of them. Al
though one may wish to include additional rings for 
some uses, any description of a molecular ring network 
should include the set of minimum spanning rings. 

A Ring Perception Algorithm. The initial informa
tion used in the perception of rings consists of the atom 
and bond tables, routines for extracting data from the 
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Figure 2. Rings are formed by growing a tree from each end of a 
ring closure bond. 

atom and bond tables, and certain primary sets which 
result from the operation of the perception executive 
on the atom and bond tables. Atoms which are not 
in rings could be deleted in a first step. However, this 
is handled automatically by the tree-growing process of 
Paton9 which yields a spanning tree, S t. For each 
atom in the tree, we store the set of bonds above 
it in the tree. When an atom is encountered that is 
already in the spanning tree, a fundamental ring is ob
tained by taking the ring sum of the two bond sets. This 
requires nb • na bits of additional storage, but eliminates 
the necessity of "walking up the tree." We then form 
the corresponding reduced basis by retaining the 
smallest two rings of each triplet; R4, R ,̂ R4 © R^; 
where i >j and j varies from 1 to n — 1 where n is the 
number of fundamental rings. 

Now for each ring closure bond, b (, we must find 
all rings containing b ; which are not larger than either 
the fundamental ring containing b; or the largest re
duced basis ring. We do this by growing a tree from 
each end of bj. For example, suppose we have the 
cubane spanning tree indicated in Figure 2, and the 
largest reduced basis ring is a four-membered ring. The 
trees for ring closure bond (1,2) are indicated above. 
They are grown one level at a time, alternating between 
the trees for atoms one and two. It is only necessary 
to compare a newly grown level with the most recent 
level on the other side to perceive rings. Rather than 
store the entire tree, we need only store the set of bonds 
above each atom in the current level. When a match 
is found between the two sides, the ring sum of 
the two bond sets gives the ring in question. This 
process is iterated until either the fundamental ring 
is found or the size of the largest reduced basis ring is 
reached. 

These rings are stored as bond sets and are used 
to select the set of minimum spanning rings. The union 
of the bond sets of the fundamental system of rings is 
the set of all ring bonds. 

We now select the smallest rings and include them 
in the set of minimum spanning rings, {Rms}. If the 

set of minimum spanning rings does not cover all 
ring bonds, we consider the set of smallest rings not 
yet examined. Any of these rings which include bonds 
not previously covered are then included in the set of 
minimum spanning rings. This process is iterated until 
all ring bonds are covered. 

Next, we construct the set of ring closure bonds 
whose fundamental ring has not been included in the 
set of minimum spanning rings, B0. 

If some ring in {Rms} contains only one bond in B0, 
we remove that bond from B0. This process is iterated 
until a pass does not remove any bonds from B0. If 
there are still bonds remaining in B0, we find the rings 
in {Rms} which contain bonds in B0. (These rings 
exist, since {Rms} is a covering set.) We now form 
the set of rings (Ri5) which are linear combinations 
of these rings. If any ring in [Ri0) contains only one 
bond in B0, we remove that bond from B0. If there 
are still bonds remaining in B0, we find the smallest 
ring(s) {Rs} which contains bond(s) in B0 but is (are) 
not in [Rie}, and add them to {Rms}. The entire 
preceding paragraph is iterated until no bonds remain 
in B0. 

Results 

A FORTRAN iv version of the above algorithm has 
been applied to a variety of ring networks, and the 
results are summarized in Table I. The total number 
of rings in a network grows very rapidly with the cyclic 
order, «, and can be quite close to the upper bound 
of 2n —1. The number of minimum spanning rings, 
however, is never much larger than the cyclic order, « 
(Table I). The approximate upper bound for the 
number of rings we must collect if we do not use a 
reduced basis, N(n), is surprisingly accurate for all 
examples in Table I. In particular, we note that N(n) 
correctly predicts that the number of rings we must 
grow will be considerably smaller for the nonplanar10 

structure VIII than for the planar10 icosahedron, even 

though the cyclic order of VIII is much larger. When a 
reduced basis is used, only the minimum spanning 
rings are grown, except in the most complicated ring 
networks. Since the number of rings grown is the 
essential factor which determines the computing time, 
this time is also approximately linear with n for the 
simpler networks. 

The algorithm discussed in this paper has two very 
desirable properties. The first is that if several simple 
ring networks are joined together so that no new rings 
are formed, the computing time for the larger system 
is approximately the sum of the computing times for 
the separate simple ring networks. The second de
sirable property is that the exponential dependence 
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Molecule 

Cyclohexane 
Cholesterol 
Dinicotinamide (II) 
Cubane (I) 
Cyclospirane (V) 
Cyclospirocubane (IX) 

Dodecahedrane 
Icosahedron 
Octacubane (VIII) 

n 

1 
4 
5 
5 
5 

10 

11 
19 
28 

No. of 
ms 

rings 

1 
4 
9 
6 
5 

11 

12 
20 
36 

2» - 1 

1 
15 
31 
31 
31 

1,023 
(62)« 

2,047 
524,287 

268,435,455 

No. of 
rings 

1 
10 
29 
28 
20 
48 

1,168 
12,878 

? 

AT(n)o 

1 
4 

12 
12 
12 
24<-

55 
196 
115 

No. of 
rings 

grown6 

1 
4 
9 

14 
12 
26 

51 
208 
118 

No. of 
rings 

grown" 

1 
4 
9 
6 
5 

11 

12 
208 
118 

" E q I . 'Without using a reduced basis. ' Using a reduced basis, 
networks, we take the sum of these functions for the smaller networks. 

d Since this molecule represents the acyclic joining of two smaller 

upon the cyclic order has been removed, permitting 
the analysis of complex ring networks. 

IX 

The set of minimum spanning rings is a small and 
therefore convenient subset of the rings, which com
pletely defines the ring network. For some applications 
one may wish to include additional rings, but the set 
of minimum spanning rings should be a part of any 
description of a cyclic molecule. 

Applications to Synthetic Analysis. The smallest 
ring in which a given bond appears places a special 
set of restrictions on how that bond can be formed, 
and this information is critical to the evaluation of the 
applicability of a synthetic reaction to the generation of 
a particular cyclic structure. The aldol reaction, for 
instance, is well suited to the construction of six- but 
not four-membered rings. The perception of rings in a 
structure plays a key role in the selection of suitable 
synthetic reactions as well as in their evaluation. For 
example, recognition of a six-membered ring is a first 
step in selecting synthetic processes such as the Diels-
Alder, Birch reduction, cation-olefin cyclization, or 
Robinson annulation reaction. Perception of in
dividual rings is also a prerequisite to the determination 
of critical relationships between rings in a complex 
network and the recognition of strategic bond discon
nections which lead to maximum simplification of the 
network. 

It appears that for the purpose of synthetic analysis 
it is desirable to recognize the set of minimum spanning 

rings plus any other rings with six or fewer bonds. This 
can be accomplished by the following approach. 
First we find the set of minimum spanning rings as 
described above. If the ring sum of any pair of these 
rings, or the ring sum of all of them, is not larger than 
a six-membered ring, we add it to the set of rings we 
consider for synthetic analysis. 

In closing, we present a brief summary of the pro
cedure for obtaining the set of minimum spanning 
rings. If one or more rings are present, then the 
following operations are carried out. 

1. GROW A SPANNING TREE. FIND FUNDAMENTAL 
RINGS (FR): Encountering an atom already in the 
spanning tree indicates FR. 

2. REMOVE ENVELOPE RINGS TO FORM REDUCED 
BASIS. For each triplet of rings, R<, R,, R< © R-,, 
retain two smallest rings. 

3. FOR EACH RING CLOSURE BOND, bc, FIND RINGS 
CONTAINING bc NOT LARGER THAN FR OR LARGEST RE
DUCED BASIS RING. Grow a tree from each end of 
b c ; a common atom in the two trees indicates a ring; 
iterate until the smaller of (a) fundamental or (b) the 
largest reduced basis ring is found. 

4. ORDER THESE RINGS BY SIZE AND STORE AS BOND 
SETS (U FR = {RING BONDS}). 

5. SELECT SMALLEST RING not in {MSR} with bonds 
not in U MSR and place them in {MSR}; iterate until U 
MSR = U FR. 
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